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This paper deals with the problem of H∞ filtering for discrete-time systems with stochastic missing measurements. A
new missing measurement model is developed by decomposing the interval of the missing rate into several segments. The
probability of the missing rate in each subsegment is governed by its corresponding random variables. We aim to design
a linear full-order filter such that the estimation error converges to zero exponentially in the mean square with a less
conservatism while the disturbance rejection attenuation is constrained to a given level by means of an H∞ performance
index. Based on Lyapunov theory, the reliable filter parameters are characterised in terms of the feasibility of a set of
linear matrix inequalities. Finally, a numerical example is provided to demonstrate the effectiveness and applicability of the
proposed design approach.
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1. Introduction

Estimation of dynamic systems has found many practical
applications and has attracted a lot of attention during the
last decades, see for example, Xu, Lam, and Mao (2007),
Zhang and Boukas (2009), Sarkka (2007), Zhang and Han
(2006), Shi, Mahmoud, Nguang, and Ismail (2006), Duan,
Zhang, Zhang, and Mosca (2006), Zhou, Xu, Chen, and
Chu (2011), Yang, Xia, Qiu, and Zhang (2010), You, Gao,
and Basin (2013) and the references therein. For instance,
filter design aiming to reduce the conservatism aroused
from time delay for Markovian jump linear systems with
norm-bounded parameter uncertainty and time-varying de-
lay has been investigated by introducing some slack matrix
variables in Xu et al. (2007), Zhang and Boukas (2009) and
Shi et al. (2006). Unscented Kalman filter to continuous-
time filtering problems is addressed in Sarkka (2007). How-
ever, these inferences are based on an ideal assumption
that the measurement outputs are precise, i.e. the output
of measuring instruments has no any deviation or missing
measurement.

Measurement inaccuracy may deteriorate the perfor-
mance of the system and even destabilise the system.
However, in practical applications, it is difficult for most
of the measuring meters to achieve measurement results
precisely due to the systemic error, stochastic error, etc. in
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the process of the measurement. Although a better result
can be attained by using a more precise and expansive
instrument, from the cost saving point of view, using a
better design method in theory is good choice for customers
as long as a good control performance can be obtained.
On the other hand, achieving a precise measurement is
impossible due to the complicated situation and technical
reasons in some cases. For example, in target tracking
control problems, the measurement inaccuracy increases
with the tracking error and the bad measurement situation.

The system subject to missing measurement has re-
cently received increasing interests due to their extensive
application, see Basin, Shi, and Calderon-Alvarez (2010),
Nahi (1969), Wang, Yang, Ho, and Liu (2006), Moayedi,
Foo, and Soh (2010), Wang, Ho, Liu, and Liu (2009), Wei,
Wang, and Shu (2009), Dong, Wang, Ho, and Gao (2010),
Gao, Zhao, Lam, and Chen (2009), Gu, Wang, and Yue
(2011), Yang and Ye (2007), and You and Yin (2013). For
example, Nahi (1969) first developed an optimal recursive
filter for systems with missing measurements and the filter
is derived via solving two Riccati equations. In Moayedi
et al. (2010), an adaptive filtering scheme is proposed for
state estimation in sensor networks and/or networked con-
trol systems with mixed uncertainties of random measure-
ment delays, packet dropouts and missing measurements.

C© 2013 Taylor & Francis
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Figure 1. The measurement output.

In Wang et al. (2006) and Gao et al. (2009), the authors
developed the missing measurement model as

yk = rkCxk (1)

where xk and yk are the state vector and the measured output
vector, respectively, and rk is a random variable taking the
value of 0 or 1, which denotes the output signal is missed
when rk = 0. In Wei et al. (2009), Dong et al. (2010) and
Gu et al. (2011), rk in Equation (1) is defined as a diagonal
random matrix. Each element of the matrix takes value in
interval [0, 1] to characterise the stochastic missing mea-
surement in each sensor channel.

As shown in Figure 1, a measurement output de-
viates from the real value in a random way. In
this case, if the real value of yk is assumed to be
2.000, the missing rate rk belongs to [0.875 1.025].
We can obtain the probabilities of the missing rate
in subintervals [0.875 0.905), [0.905 0.935), [0.935 0.995)
and [0.995 1.025] as 7%, 38%, 46%, 5% and 4%, respec-
tively, by using statistic way. The difference of the probabil-
ity distribution among those intervals is remarkable (shown
in Figure 2). Apparently, it will lead to some conservatism if
we still regard the distribution of the missing rate obeys only
one statistical features. This motivates us with the present
study.

In this paper, an H∞ filtering design is addressed for
the system subject to probabilistic missing measurements.
A novel missing measurement model is developed by util-
ising the statistical feature of the missing rate in every
subintervals. By using Lyapunov function approach, suffi-
cient conditions on the H∞ performance analysis are given
and the desired filter parameters related to the statistical
feature of the missing rate are also achieved. Simulation
results demonstrate the effectiveness of the proposed filter
design scheme.

Figure 2. The distribution of the measured output.

Notation: Rn denotes the n-dimensional Euclidean
space; Rn×m is the set of real n × m matrices; I is the
identity matrix of appropriate dimensions; ‖·‖ stands for
the Euclidean vector norm or spectral norm as appropriate;
the notation X > 0 (respectively, X < 0), for X ∈ Rn×n

means that the matrix X is a real symmetric positive def-
inite (respectively, negative definite); the notation X � Y

for X, Y ∈ Rm×m means that every element of the diago-
nal matrix X is no more than the corresponding one of the
diagonal matrix Y . When x is a stochastic variable, E{x}
stands for the expectation of x; the asterisk ∗ in a matrix is
used to denote term that is induced by symmetry.

2. Problem formulation and preliminaries

Consider the following discrete-time linear system with
state time delay,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(k + 1) = Ax(k) + Adx(k − d) + Bω(k)

y(k) = �(k)Cx(k) + Dω(k)

z(k) = Lx(k)

z(k) = φ(k), k = −d,−d + 1, . . . , 0

(2)

where x(k) ∈ Rn is the state vector; y(k) ∈ Rm is the mea-
sured output vector; z(k) ∈ Rq is the signal to be estimated;
φ(k) is the initial condition of the state; d > 0 is the time de-
lay; ω(k) is the deterministic disturbance signal in l2[0,∞);
�(k) (0 � � � �(k) � �̄) is a diagonal matrix, which de-
notes the missing rate matrix; A,Ad, B,C,D and L are
system matrices with appropriate dimensions.

As mentioned in Section 1, the missing rate of the
measurement output, in general, does not obey a single
distribution in the overall interval of the missing mea-
surement. Here, we decompose the interval of the miss-
ing rate into several subintervals according to the statistic
feature of the missing rate. For convenience of analysis,
we define a set �i = {k|�i � �(k) � �̄i, i ∈ I � {i|i =
1, 2, . . . , p}}, where �̄i = �i+1 and �1 = �, �̄p = �̄,
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from which we can know that ∪p
i=1�i = R+ and �i ∩ �j

is an empty set for i, j ∈ I, i 
= j . Therefore, the missing
rate takes value in the ith interval when k ∈ �i . It should
be noted that which subinterval k belongs to is a random
event; therefore, we define a stochastic variable αi(k) as

αi(k) =
{

1 k ∈ �i

0 others

Based on the above discussion, the measured output is
then modelled by

ỹ(k) =
p∑

i=1

αi(k)�i(k)Cx(k) + Dω(k) (3)

where �i(k) = diag{πi1(k), πi2(k), . . . , πim(k)}(i ∈ I),
πij denotes the missing rate in each measurement channel.
We define Prob{αi(k) = 1} = ᾱi and

∑p
i=1 ᾱi = 1.

Remark 1: If αi(k) ≡ 1 and �i(k) ≡ 1, then the problem
reduces to a normal filter design.

Remark 2: If one selects p = 1, Prob{α1(k) = 1} becomes
100%, then it reduces to the case of the missing rate varying
in a single interval.

Remark 3: In model (3), we assume the expectation of
the random variable αi(k) and its variance σi are known in
prior. The more distribution information of the missing rate
we know, the larger number p can be set, and the interval
endpoint depends on the prior selection of the statistic fea-
ture. It should be noted that a less conservative result can
be attained with the increasing number p, which will be
illustrated in Section 5. It is a trade-off between the perfor-
mance and the difficulty of the acquisition of the statistic
feature.

For analysis convenience, here, we define �i0 =
1
2 (�̄i + �i) and �i1 = 1

2 (�̄i − �i). Then �i(k) can be
rewritten as

�i(k) = �i0 + 	i(k)�i1 (4)

where 	i(k) is a unknown matrix function satisfying

	T
i (k)	i(k) ≤ I (5)

In this paper, we are interested in designing a linear
filter for the estimation of z(k) in Equation (2),

{
xf (k + 1) = Af xf (k) + Bf ỹ(k)

zf (k) = Lf xf (k)
(6)

where xf (k) ∈ Rn and zf (k) ∈ Rq ; Af ,Bf and Cf are ma-
trices to be determined.

Combining Equations (2) and (6), the filtering error
dynamics can be represented as{

x̄(k + 1) = Āx̄(k) + Ãx̄(k) + Ād x̄(k − d) + B̄ω(k)

ē(k) = L̄x̄(k)

(7)

where x̄(k) = [
xT (k) xT

f (k)
]T

, e(k) = z(k) − zf (k) and

Ā =
[

A 0
Bf

∑p
i=1 ᾱi�i(k)C Af

]
,

Ã =
p∑

i=1

(αi(k) − ᾱi)

[
0 0

Bf �i(k)C 0

]

Ād =
[
Ad 0
0 0

]
, B̄ =

[
B

Bf D

]
, L̄ = [L − Lf ].

In this paper, we aim to design the filter gain matrices
in Equation (6), such that the following requirements are
simultaneously satisfied:

• the zero-solution of the augmented system (7) with
ω(k) = 0 is asymptotically stable in the mean square;

• under the zero-initial condition, the filtering error
e(k) satisfies

E

{ ∞∑
k=0

‖e(k)‖2

}
≤ E

{ ∞∑
k=0

γ 2‖ω(k)‖2

}
(8)

for all nonzero ω(k), where γ > 0 is a given distur-
bance attenuation level.

The following lemma is useful in deriving the criteria.

Lemma 2.1 (Boyd, El-Ghaoui, Feron, Balakrishnan, &
Yaz, 1997): Let � = �T , M and N be real matrices of
appropriate dimensions with 	 satisfying 	T 	 ≤ I . Then,

� + M	N + N T 	TMT ≤ 0

if and only if there exists a positive scalar ε > 0 such that

� + εMMT + ε−1N T N ≤ 0

or equivalently⎡
⎣ � ∗ ∗
MT −εI ∗
εN 0 −εI

⎤
⎦ ≤ 0

3. Stability and H∞ performance analysis

At first, we establish criteria of mean-square stability and
H∞ performance for the filtering error dynamics (7), which
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plays a fundamental role in the derivation of our H∞ filter
design method.

Theorem 3.1: Consider the system (2) subject to prob-
abilistic missing measurements. Given a scalar γ > 0
and the filter parameters Af ,Bf and Cf . If there exist
positive-definite matrices P = P T > 0,Q = QT > 0 sat-
isfying Equation (9), then the filtering error system (7) is
mean-square stable with H∞ filtering performance,

�1 =

⎡
⎢⎢⎣

1 ∗ ∗ ∗
L̃ −I ∗ ∗

PA 0 −P ∗
P Ã 0 0 −P

⎤
⎥⎥⎦ < 0 (9)

where 1 = diag{−P + Q,−Q,−γ 2I }, A = [Ā Ād B̄],
L̃ = [L̄ 0 0],

Ã =
[∑p

i=1 σi

[
0 0

Bf �i(k)C 0

]
, 0, 0

]
.

Proof: Define a Lyapunov functional candidate as

V (k) = x̄T (k)P x̄(k) +
k−1∑

i=k−d

x̄T (i)Qx̄(i) (10)

Calculating the difference of V (k) along the system (7)
and taking its mathematical expectation, we have

E{	V (k)} = E
{
x̄T (k + 1)P x̄(k + 1)

}
+ E

{
x̄T (k)(Q − P )x̄(k)

}
− E

{
x̄T (k − d)Qx̄(k − d)

}
(11)

Note that E{αi(k) − ᾱi} = 0 and

E{(αi(k) − ᾱi)(αj (k) − ᾱj )} =
{
σ 2

i i = j

0 i 
= j
i, j ∈ I

Then we have

E{x̄T (k + 1)P x̄(k + 1)}
= E

{
ξT (k)

[
AT PA + ÃT P Ã

]
ξ (k)

}
(12)

where ξ (k) = [x̄T (k) x̄T (k − d) ωT (k)]T .
Putting Equation (12) into Equation (11), we obtain

E{	V (k)} = E
{
ξT (k)(AT PA + ÃT P Ã)ξ (k)

}
+ E{x̄T (k)(Q − P )x̄(k)

− x̄T (k − d)Qx̄(k − d)}

Using Schur complement for Equation (9) and recalling
the definition of ē(k) in Equation (7), we have

E{	V (k) + ēT (k)ē(k) − γ 2ωT (k)ω(k)} ≤ 0 (13)

If we choose ω(k) = 0, one can conclude that
E {	V (k)} ≤ −ε‖x̄(k)‖2 for a sufficiently small ε > 0 and
x(k) 
= 0, and thus the mean square stability for the system
(7) with ω(k) = 0 is established.

Next, when ω(k) 
= 0, we can obtain

E

{ ∞∑
k=0

eT (k)e(k)

}
≤ E

{ ∞∑
k=0

γ 2ωT (k)ω(k)

}

+ E {V (0) − V (∞)}

by summing up Equation (13) from 0 to ∞ with respect to
k on both sides of Equation (13). Under zero conditions, it
is straightforward to see that

E

{ ∞∑
k=0

eT (k)e(k)

}
≤ E

{ ∞∑
k=0

γ 2ωT (k)ω(k)

}

Recalling the requirement of the filter design in Sec-
tion 2, the proof of Theorem 3.1 is then completed. �
Theorem 3.2: Consider the system (2) subject to prob-
abilistic missing measurements. Given a scalar γ > 0,
the statistic feature parameters related to the missing
measurements ᾱi , �i and �̄i , and the filter parameters
Af ,Bf and Cf . If there exist positive-definite matrices
P = P T > 0,Q = QT > 0 and scalars εi (i ∈ I) satis-
fying Equation (14), then the filtering error system (7) is
mean-square stable with H∞ filtering performance,

� =
⎡
⎣�̄1 ∗ ∗

�2 �3 ∗
�4 0 �̄3

⎤
⎦ < 0 (14)

where

�̄1 =

⎡
⎢⎢⎣

1 ∗ ∗ ∗
L̃ −I ∗ ∗

PA0 0 −P ∗
P Ã0 0 0 −P

⎤
⎥⎥⎦,

�2 = [
�T

21 · · · �T
2p

]T
,�2i =

[
0 0 T

2i 0
0 0 0 T

3i ,

]
,

2i = P

[
0

ᾱiBf �i1

]
, 3i = P

[
0

σiBf �i1

]
,

�3 = −diag{ε1I
2n×2n, . . . , εpI 2n×2n},

�̄3 = −diag{ε1I
n×n, . . . , εpI n×n},

�4 = [
ε1�41 . . . εp�4p

]
,�4i = [[C 0] 0 0 0 0 . . . 0],

A0 = [
Ā0 Ād B̄

]
, Ā0 =

[
A 0∑p

i=1 ᾱiBf �i0C Af

]
,

Ã0 =
[∑p

i=1 σi

[
0 0

Bf �i0C 0

]
0 0

]
, i ∈ I.
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Proof: Recalling the definition of �(k) in Equation (4), we
have

�1 = �̄1 +
p∑

i=1

{
�2i	i(k)�4i + �T

4i	i(k)�T
2i

}
(15)

By using Lemma 2.1, it yields

�1 ≤ �̄1 +
p∑

i=1

{
εi�2i�

T
2i + ε−1

i �T
4i�4i

}
(16)

which is equivalent to Equation (14) by using Schur com-
plement. This completes the proof. �

4. H∞ filtering design

In this section, we provide a solution to the filtering de-
sign problem for the systems (2) subject to the stochastic
missing measurements. Our immediate goal is to transform
inequalities (14) into an explicit linear matrix inequalities
(LMI) with the unknown filter matrices.

Theorem 4.1: Consider the system (2) subject to proba-
bilistic missing measurements. Given a scalar γ > 0 and
the parameters related to the missing measurements ᾱi , �i

and �̄i , there exists a filter in the form of Equation (6)
such that the filtering error system (7) is mean-square sta-
ble with H∞ filtering performance, if there exist positive
definite matrices P = P T > 0,Q = QT > 0, and scalars
εi > 0 (i ∈ I) such that the following LMI holds:

�̄ =
⎡
⎣ �̃1 ∗ ∗

�̃2 �3 ∗
�̃4 0 �̄3

⎤
⎦ < 0 (17)

where

�̃1 =

⎡
⎢⎢⎣

̃1 ∗ ∗ ∗
L̂ −I ∗ ∗
�1 0 −P̄ ∗
�2 0 0 −P̄

⎤
⎥⎥⎦

̃1 = diag{−P̄ + Q̄,−Q̄,−γ 2I }, P̄ =
[

P1 R

R R

]
L̂ = [ [

L −L̄f

]
0 0

]
�1 = [

Ã0 Ãd B̃
]
, �2 = [

ϕ 0 0
]

Ã0 =

⎡
⎢⎢⎢⎢⎣

P1A +
p∑

i=1

ᾱi B̄f �i0C Āf

RA +
p∑

i=1

ᾱi B̄f �i0C Āf

⎤
⎥⎥⎥⎥⎦, Ãd =

[
P1Ad 0
RAd 0

]

B̃ =
[

P1B + B̄f D

RB + B̄f D

]
, ϕ =

⎡
⎢⎢⎢⎢⎣

p∑
i=1

σiB̄f �i0C 0

p∑
i=1

σiB̄f �i0C 0

⎤
⎥⎥⎥⎥⎦

�̃2 = [
�̃T

21 · · · �̃T
2p

]T
, �̃2i =

[
0 0 ̃2i 0
0 0 0 ̃3i

]
(i ∈ I)

̃2i = [
ᾱi�i1B̄

T
f ᾱi�i1B̄

T
f

]
, ̃3i = [

σi�i1B̄
T
f σi�i1B̄

T
f

]
Furthermore, if Equation (17) is true, the desired filter pa-
rameters are given by

Af = Āf R−1, Bf = B̄f , Lf = L̄f R−1

Proof: We are about to prove the conclusion using The-
orem 3.2. Partition the matrix P as P = [

P1 P2

P T
2 P3

]
, where

P1 > 0, P3 > 0 and P2 is invertible. Define

J :=
[

I 0
0 P2P

−1
3

]
, T := diag{J, J, I, I, J, J, I, . . . , I︸ ︷︷ ︸

2p

},

Q̄ := JQJT ,

R := P2P
−1
3 P T

2 , Āf = P2Af P −1
3 P T

2 , B̄f := P2Bf ,

L̄f := Lf P −1
3 P T

2

Pre- and post-multiplying � in Equation (14) with T
and its transpose, we have

T �T T = �̄ (18)

where �̄ is defined in Equation (17). If Equation (18) holds,
i.e. �̄ < 0, then � < 0, which means the filtering system
(2) has a prescribed H∞ performance γ . From the above
definition, the filter parameters can be rewritten as

Af = P −1
2 Āf R−1P2, Bf = P −1

2 B̄f , Lf = L̄f R−1P2

(19)

Since the following systems are algebraically equivalent
as in Zhang and Han (2008),[

Af Bf

Lf

]
=

[
P −1

2 Āf R−1P2 P −1
2 B̄f

L̄f R−1P2

]
=

[
Āf R−1 B̄f

L̄f R−1

]
(20)

This completes the proof. �
Remark 4: The system with constant time delay is con-
sidered in this paper as our attention mainly focuses on the
filter design for the system with stochastic missing mea-
surements, it is easy to extend the presented results to the
system with time-varying delay by using the method similar
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Table 1. The distribution of the missing rate.

Missing rate p γmin

Case 1
�1 = 0.6, �̄1 = 0.8, ᾱ1 = 0.2
�2 = 0.8, �̄2 = 1.0, ᾱ2 = 0.8

2 3.97

Case 2 �1 = 0.6, �̄1 = 1.0, ᾱ1 = 1.0 1 4.47

to He, Wu, She, and Liu (2004), Yue and Han (2005) and
Gao and Chen (2007).

5. Examples

In this section, we present a numerical example to illustrate
the usefulness of the developed method on the design of
H∞ filter for the discrete system subject to probabilistic
missing measurements.

Consider the system (2) with parametric matrices as
follows:

A =
[

0.9 0
0 0.7

]
, B =

[
0
1

]
, Ad =

[−0.1 0.01
−0.1 −0.1

]
,

C = [
1 1

]
, L = [

1 2
]
, d = 5

.
Two cases are listed in Table 1 from which one can know

the missing rate varies from 0.6 to 1.0 in a stochastic way.
In Case 1, the distribution of the missing rate between the
two subintervals, i.e. [0.6 0.8) and [0.8 1.0), is markedly
different. The expectations of the missing rate in these two
subintervals are 0.2 and 0.8, respectively. However, in Case
2, the distribution does not differentiate between these two
subintervals.

By using Theorem 4.1, one can obtain the minimised
feasible γ for the filtering problem is γmin = 3.97 under the
condition of Case 1, while γmin = 4.47 under the condition

Figure 3. The distribution of the missing rate.

Figure 4. The output of y(k) and ỹ(k).

of Case 2, which has illustrated that a less conservative
result can be obtained than the one without considering its
detailed missing rate distribution. Also, the filter gains can
be achieved for the filtering problem under Case 2 as follows
by solving the LMI in Theorem 4.1 with H∞ performance
γ = 3.97,

AF =
[

0.9552 −0.2565
−0.0770 0.4281

]
, BF =

[−1.2769
−2.6817

]
,

LF = [ −0.0296 −0.3258 ]

To further show the effectiveness of the ob-
tained filter, let exogenous disturbance input ω(k) =
0.07 exp−0.3k cos(0.1πk) and the initial condition be φ(k) =
[0.1 − 0.2]T , k ∈ [−5, 0].

Figure 5. The output of z(k) and zf (k).
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Figure 3 shows the distribution of the missing rate, from
which we can see that there exists a significant difference of
the missing rate distribution between the interval [0.6, 0.8]
and [0.8, 1.0]. It can be seen from Figure 4, under this
stochastic missing rate, the measured output deviates its
real signal by different degrees in every sampled time.

Figure 5 depicts the estimated results for the system
(2). The simulation has confirmed that the designed filter
performs very well even the system is subject to stochastic
missing measurements.

6. Conclusion

In this paper, a filtering problem has been investigated for
a linear delayed systems subject to stochastic missing mea-
surements. A new stochastic missing measurement model
is developed based on decomposing the varying interval of
the missing rate into several intervals into which the proba-
bilities of the practical measurement cast are different. We
have established both the existence conditions and the ex-
plicit expression of the desired filters subject to stochastic
missing measurements. A simulation example is presented
to demonstrate the validity and less conservatism of the
proposed approach.
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